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The force on a sphere moving through a conducting 
fluid in the presence of a magnetic field 
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Cese Institute of Technology, Cleveland, Ohio 

(Received 8 July 1960 end in revised form 16 January 1961) 

The force on a sphere moving through an inviscid, conducting fluid in the 
presence of a uniform magnetic field B, is calculated for the low-conductivity 
case where the hydrodynamic motion deviates only slightly from potential flow. 
The magnetic Reynolds number is assumed small. The force on the sphere is 
found to consist of both a drag and a deflective component which tends to orient 
its motion parallel to a magnetic field line; if the sphere’s velocity is V, the force 
may be written R = -AB;V+C(V.B,)B,, 

where the coefficients A and C depend on the conductivities of both sphere and 
fluid. The coefficients are evaluated by calculating the Joule dissipation for 
particular orientations of V relative to B,. In  one case the force is also calcu- 
lated directly fiom the perturbed pressure distribution in the fluid. In  an analo- 
gous way, a spinning sphere in a conducting fluid experiences both resistive and 
gyroscopic torques. 

1. Introduction 
A n  uncharged, non-magnetic body moving through an inviscid conducting 

fluid or plasma in the presence of a magnetic field should experience a resistive 
drag force or torque due to the Joule dissipation of energy caused by induced 
ourrents in the conducting system. We call this induction drag. Accompanying 
such drag forces are generally deflective forces or torques of similar magnitude 
at right angles to the velocity or angular velocity of the body, which might be 
called induction deflexion. The problem in the case of a strong magnetic field 
has been studied in some detail by Stewartson (1956). For the case of a weak 
magnetic field, calculations of the induction drag for a sphere have been made by 
Chopra (1956, 1957) and by Chopra & Singer (1958), but the expressions they 
obtain are incorrect as is evident from the fact that their drag force does not 
vanish when the conductivity of the fluid goes to zero, a result in conflict with the 
Special Theory of Relativity. Their error appears to arise, among other things, 
from a failure to observe that a concomitant of such motion is the induction of 
charges on the surface of a sphere (and in the case of a spinning sphere, induced 
volume charge density in the sphere itself) producing electric fields of comparable 
magnitude to those produced by induction (dynamo effect). There are additional 
effects if the body is charged or magnetized, but such cases are not considered in 
this paper. 
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It is the purpose of the present paper to provide correct expressions for indua- 
tion drag and deflective forces for a sphere moving with constant velocity, and 
expressions for induction drag and deflective torques for a spinning sphere, on the 
assumption that the induced magnetic field is small and that the hydrodynemia 
motion differs only slightly from the situation of potential flow. Such situations 
should exist when the magnetic field is sufficiently weak or the conductivity of 
the fluid is sufficiently small. In  obtaining drag and deflective forces it is tacitly 
assumed that the fluid motion is steady in the system of co-ordinates in which the 
sphere is at rest. We have not been able to show that our solution to the problem 
is unique or even that a steady-state solution of the magnetohydrodynamic 
equations exists in all caam of this type. However, for the case of motion of the 
sphere parallel to the magnetic lines of induction, we demonstrate that the drq 
force obtained from Joule losses is the same aa that computed from the perturbed 
pressure distribution in the fluid to first order in the fluid c0nductivity.t The 
tlssumption that the zero-order magnetic field can be taken to be a uniform 
field in these caws also requires examination, since Ludford & Murray (1960) 
have shown that for a similar geometry, the perturbation expansion of the mag- 
netic field in the fluid conductivity is not regular. 

In 92 we carry out in a straightforward manner the calculation of the forces by 
the use of the Joule-loss method for several caaes of interest. I n  Q 3, we examine 
in more detail the assumptions and approximations made in the special caae of 8 

sphere moving parallel to the magnetic field and verify that a complete first- 
order calculation yields the same result for the drag force aa does the Joule-loee 
calculation. 

2. Force and torque from Joule losses 
Consider a homogeneous spherical body of radius u and electrical conductivity 

cr' moving with velocity - V (or spinning with angular velocity o) in an inviscid, 
incompressible fluid of conductivity cr in the presence of a uniform magnetic field 
B,. The Joule losses resulting from the induced currents in the sphere-fluid 
system wil l  be calculated and equated to the rate at which mechanical energy is 
dissipated by the sphere, R. V (or D ,o). These calculations enable us to obtain 
the drag force, R, or the drag torque, D, respectively. 

In  calculating the induced currents, the magnetic field is taken to be the zero- 
order uniform field, and the fluid velocity is taken to be t b t  which would exist 
if the conductivity of the system were zero. The first of these statements requiree 
that the magnetic Reynolds number, R,, = crp Vu, be small and that the perturba- 
tion expansion of the magnetic field in terms of this parameter, although irregu- 
lar at large distances, does not change the uniform field in the current-carrying 
region. The second statement requires that the parameter BRM = aaG/pV 
be small and that the perturbation expansion for the fluid velocity be sufficiently 
regular in the same sense. These remarks will be amplified in ss3.2 and 3.3. 
Here p is the density of the fluid. 

t After completion of this work, our attention haa been directed to a paper by Ludford 
(1960) who ale0 makea the point thet, for flow at low magnetic Reynolds number, theinduc- 
tion drag can be computed h t l y  from the undisturbed potential flow and msgnetic field. 
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No restrictions will be placed on the conductivity u’ of the translating sphere,? 
although for the rotating sphere it will be necessary to assume that Bb,, (defined 
using u’ and p’) is small also. We shall take the permeabilities of sphere and fluid 
equal to each other so that induced dipole effects may be neglected. 

2.1. Force 012 a moving sphere f r m  Joule losses 
The basic equations of the electromagnetic field under steady conditions are: 

(a) div B = 0, (b) curlE = 0, (c) curl B = pj, (a) div E = p/s, 

(e)divj = 0, (f) j = u8, (1) 

8 = E+VX B, (2) 

where, for convenience, we have defined 8 by 

and will refer to it aa the ‘effective electric field’. The Joule energy dissipation 
per unit volume is then up. In  this paper we use rationalized electromagnetic 
units. Equation (1 c) will not be used in this section since it  serves to generate 
the perturbation expansion for B. Instead we take B = B,. 

The Joule losses will be calculated in the system of co-ordinates at rest in the 
sphere, where the hydrodynamic motion is steady. As discussed earlier, the velo- 
city in the fluid is described by potential flow; thus, we write 

(3) v = V + 4aa”V(V. r/r3) 

relative to an origin at the centre of the sphere. 
It is expedient to break up the problem into several parts and discuss first 

the cam where V is parallel to B,. Next, the case where V is perpendicular to B, 
is considered. Finally, the general case where V makes an oblique angle with B, 
may be described simply in terms of the other two fundamental solutions. 

(a) Case 1 : V parallel to B,. I n  this case there is no induction term inside the 
sphere; furthermore, since v x B, in the fluid has no component perpendicular 
to  the spherical surface, it  is evident that there is no surface electric charge. 
In  fact, there is no eleotrostatic field at all since both div (v x B,) = 0 and 
div j = 0. This implies that div E, = 0 and, hence, no volume charge. Thus, inside 
the sphere the effective electric field is given by 

and in the fluid by 

Here we use spherical polar co-ordinates (r,  8,#)  with V taken as the direction of 
the polar axis. 

The total rate of Joule energy dissipation is obtained by integrating uB2 over 
the fluid volume. If this is equated to I-li V one obtains for the drag force 

fir = 0, (4) 

(6 )  8 = v x B, = (3 VB, U3/213) [o, 0, cos e sin el. 

Bl = +naauBi V. (6) 
For this geometry there is pure drag, i.e. no deflexion, aa may be readily verified 
by symmetry arguments. 

t The oonductivity of the sphere may be arbitrarily large; if the conductivity ie infinite, 
however, the reeulta of the calculation may have to be modified, depending on the megni- 
tude end orientation of the megnetic field initially frozen into the sphere. 
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(b) Caee 2: V perpendiculur to B,. When the sphere is moving perpendicular 
to the magntic field, the effective electric field inside the sphere is just the electrio 

B’ = E .  (7) 
field E ,  or 

In the fluid the effective electric field is given by the sum of two terms, namely 

8 = v x B 0 + E ,  (8) 
or 

(84 
8 = - ( VB0d/2rS) [ -sinBsin $ ,2  cos Osin$, COB $(3 cos28- l)] +V x B,+E. 

Here V is taken aa the polar direction and Bo in the $ = 0 plane. 8 must vanish 
at infinity; the second term in (Sa) doee not vanish there so it’must be cancelled 
by a part of E. Now div (~’8’ )  = 0 and div (ad’) = 0 ;  since the induction term in 
(Sa) is itself divergence-free, we have 

divE = 0, divE’ = 0. 

This result combined with (1 b) allows us to write formal series expamione for 
E and E‘ in terms of tesserd harmonics, Z,(B, 9). Thus we write 

with the b, and b; aa yet undetermined constants. The boundary conditions to 
be satisfied are continuity of the tangential component of electric field and con- 
tinuity of the normal component of current density on the spherical surface. 
The first of these conditions leads immediately to the result b, = b;. 

The boundary condition on the current density shows that all b, = 0 except for 
the tesseral harmonic involving sin B sin $ for which 

b = -#VB0(a+2a’)/(2a+a’).  

Inoorporation of these results into the formal series expansions, (9) and (lo), 
leads to 

i.e. a uniform field, and 

E‘ = -#VB0[3a/(2a+a’)] V(rsinBsin$), (11) 

(12) 

The total rate of energy dissipation is obtained by integrating u‘E‘, over the 
volume of the sphere and adding the result to the integral of d2 over the external 
region. Equating this to the rate of mechanical energy dissipation, R, V (where 
R2 is the drag force), we obtain 

E + V  x B, = -~VB,[(a+2a’)/(2a+a‘)]V(aSsin8sin$/r2). 

R2 = ~na3B~Va(a+3a’)/(2a+a’).  (13) 

For this geometry there is again pure drag aa may be readily verified by sym- 
metry arguments. The current lines (lines of effective electric field) in the fluid 
me shown in Iigure 1 for the c- in which a’ = 0. 
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(c) Case 3: oblique angle. When the magnetic field B, makes an oblique angle 
with the velocity V, the sphere experiences both deflective and drag forces. 
That a deflective force exists may be readily verified by considering the j x B, 
contribution from the sphere itself. Now a vector force proportional to Bg V can 
be constructed from a linear combination of B, x (V x B,) and B,(V . B,) terms, 
or equivalently, from a combination of BiV and B,(V. B,) terms. Thus, the 

I ’  

FIGURE 1. Current lines in a conducting fluid for a non-conducting sphere moving 
with velocity V at right angles to  a uniform magnetic field B. 

force on the sphere (here we let V stand for the sphere’s actual velocity in the 
stationary fluid) can be written 

R = -ABiV+C(V.B,)B,. (14) 

The coefficients A and C may be evaluated from equations (6) and (13). We find 

A = & ~ ~ ~ [ a ( a + 3 a ’ ) / ( 2 a + d ) ] ,  

c = +raS[a( 7a’ - a)/( 2a + a‘)]. 

A moving sphere thus experiences, in general, a deflective force which tends to 
orient its motion parallel to a magnetic field line. Such forces may have a measur- 
able effect on the orbital motion of earth satell ih,  although it must be empha- 
sized that the hydrodynamic model of the fluid assumed here is quite different 
from that of an atmospheric plasma with its long free-path for charged particles. 

2.2. Discussion 

There are several points regarding equation (14) worth commenting upon. First, 
the induction drag and deflexion vanish when the conductivity of the fluid is 
zero. For finite a but vanishing a’, on the other hand, there is a drag and in 
general a deflective force also. This result is due to the presence of complete 
eddy-current paths in the fluid, an example of which is shown in figure 1. Finally, 
it should be mentioned that a calculation of the direct electromagnetic force on 
the sphere, obtained from the Maxwell stress-tensor, does not give the total force 
R. The integral of the normal component of the straw tensor over the surface 
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of the sphere is equivalent in cases 1 and 2 to integrating the body force, 
j x B,, over the spherical volume; for caae 1 this gives zero, while for caae 2 one 
obtains 27raaBi V a d / ( 2 a +  a'). Thus, equations (6), (13) and (14) includemechani- 
d forces which are transmitted by the fluid. This point will be discussed further 
in 5 3 of the paper. 

2.3. Torque on a spinning sphere f r m  Joule losses 
The torque on a sphere spinning about its axis with angular velocity o in the 
presence of a magnetic field B, can be calculated by the procedure of 52.1. If 
the fluid is inviscid, there is no fluid motion and hence no induction field in the 
fluid. Here we shall have to make the additional restriction that the magnetic 
Reynolds number in the sphere, R& = a',u'ou2, is small in order that the mag- 
netic field shall not deviate appreciably from B,. This is necessary because of the 
presence of complete eddy-current paths within the sphere itself for certain 
orientations. 

We shall only summarize the results because the basic solutions for the electric 
fields are encompassed in the work of Bullard (1949) who determined the form of 
the electric and magnetic fields in a rotating conducting sphere of arbitruy 
magnetic Reynolds number, surrounded by a stationary shell of the same 
electrical conductivity. In  Bullard's solutions the radial dependence is given in 
terms of spherical Bessel functions of the complex argument (iR&)* r/a, but by 
making the appropriate small argument expansion of the Bessel functions, his 
solutions reduce to oum in lowest order. 

(a) Case 4: oparallel to B,. The induction field inside the sphere may be written 
aa E,,,, = &B,V(r2 sin2@, 

where, for convenience, o is taken aa the direction of the polar axis. Although 
the divergence of this field does not vanish, its curl does. Thus the divergence may 
be cancelled by an appropriate electrostatic field. For steady conduction the 
effective electric field must be divergence-free. We find that all boundary con- 
ditiom can be satisfied by taking the effective electric field inside the sphere to be 

8' = -[BawB,/(3a+2a')]V[r2(3cosae- l)], (16) 

E = [aw3,/(3a+ 2 4 1  v [ ( 3 c o m -  1) q 3 q .  

and the electric field in the fluid to be 

(17) 

By equating the rate of Joule energy dissipation to D1w, we obtain, for the drag 
torque, 

If we let a = a', this result reduces to that found by Bullard (aee, for example, 
his equation (29)]. 

(b) Case 6: w perpendicular to B,. When o is oriented perpendicular to B,, 
the effective electric field inside the sphere may be written aa 

(18) D, = &IXJ~WGCU'/(~U+ 2 d ) .  

8' = - U B , T ~ ~ ~ O C O ~ # + E '  (19) 
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if o is taken 88 the polar direction and B, is in the g5 = 0 plane. In the fluid, 

8 = E. (20)  

(21)  

(22)  

(23) 

The boundary conditions are satisfied by taking 

E' = [a'wB,/( 3 a  + 2d)]  V(ra COB 8 sin 8 cos 4) 
E = [ C ~ ' ~ B , U ' / ( ~ C  + 2 d ) l  V ( C ~ S  e sine COB $1~) .  

D, = + ~ u ~ w B B , Q ' ( Q  + ; v ' ) / ( ~ v  + 2 d ) .  

and 

From the energy dissipation, we readily obtain 

In this caae there is drag torque on a conducting sphere even when the conducti- 
vity Q of the fluid vanishes. This results from eddy currents wholly inside the 
sphere. The torque can be calculated alternatively by integrating r x (j x B,) 
over the sphere; in both caws, (4) and (6 ) ,  the total torque is in the direction - o. 

(c) Cacle6: obliqueangle. Byanalogywithcase3, thevectortorqueonaspinning 
sphere may be written as 

D = -aGo+yBo(Bo.~~) .  (24)  

Comparison with equations (20) and (26)  yields the relations 

a = &7rasa' (3a+d)/ (3a+ 247 ,  

y = &7ra5a'(a+a')/(3a+ 2a') .  

3. More detailed mathematical analysis 
In calculating the resistive force on a translating sphere by the Joule-loss 

method, we found that part of the force had to be transmitted via mechanical 
forces in the fluid. It is of intertwt, therefore, to see what can be said about the 
perturbed hydrodynamic flow. 

3.1. Fun.d.um.ental eqwctiom 
We shall work in the system of co-ordinates in which the sphere is at  rest, and 
look for a steady solution to the hydrodynamic equations. The equations govern- 
ing the steady motion of an incompressible, inviscid, electrically conducting fluid 

together with the equations for the electromagnetic field, equations (1). The 
velocity, pressure, and magnetic field can be developed in perturbation series 
in powers of an expansion parameter proportional to B$ Va (Ludford & Murray 
1960). The zero-order magnetic field can also be expanded in powers of the 
magnetio Reynolds number, RM (see $3.2).  

Writing v = V, + v,, with 
v, = V+&z3V(V.r/13) (26) 

the unprturbed velocity, and v1 the perturbed velocity of the fluid, writing the 
preasure p = po+pl ,  and B = B(0)+Bl, we obtain the linearized equations 
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for v, (here we have written B(0) for the zero-order field since B, has been wed 
to denote the uniform field) in the form 

} (27) 
(a) divv, = 0, 

(b)  ( C U ~ ~ V J X V O  = -V(V,.V,+~,/~)+(~/P~)CUT~B(O)X B(0). 

If equation (27 b )  is put in dimensionless form by writing all velocities in units of 
V ,  all pressures in units of pVa, and all distances in units of a, then it is seen 
that the magnetic body force is of order 

where #I = a / p p  Va, RM = up Va. 
Not only must be small in order to treat v, aa a perturbation, but the magnetic 
Reynolds number R M  must also be small in order that the magnetic field shall not 
deviate appreciably from B, in the current-carrying region. 

If the sphere's velocity V is too small, then (28) shows that the magnetic force 
cannot be treated a a perturbation. Thus it is not immediately clear that a 
solution to equation (27) is appropriate when the sphere is brought to a steady 
velocity after starting from rest. However, when the sphere is moving very 
slowly the effect of viscosity cannot be neglected. Chester (1957) has studied the 
effect of a magnetic field on Stokes's flow in a conducting fluid and has found a 
steady solution of the hydrodynamic equations which does not diverge aa V 
approaches zero. 

f = BRM7 (28) 

3.2. Expansion of B(0) in t e r n  of the magnetic Reynolds number 
The use in 1 of the uniform field B, for the zero-order field (with reference to 
an expansion in powers of R M )  requires some justification, particularly since 
Ludford & Murray found that such a perturbation expansion is irregular. The 
magnetic field B(O), or for brevity B, in the fluid must satisfy the equations 

curl B = u~[E + V, x B], (29) 

divB = 0. (30) 

We consider only cam 1 geometry. Here there is no electric field. For the 
remainder of the paper we shall make v, r, and B dimensionless by referring them 
to the velocity at infinity V, the radius of the sphere a, and the uniform magnetic 
field B,, respectively. Let us write 

B = v,+b. (31) 

The first term, v,, satisfies both equations (29) and (30) and gives the correct 
asymptotic form to the field at infinity. Thus we need consider only b. If we mtisfy 

with A = A(r, O), then in the fluid, (29) becomes 
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For small values of RM, the appropriate solution to (33) may be found by a per- 
turbation expansion. We require a solution with dipole character to cancel 
approximately the dipole behaviour in v,. This is just the solution, which has 
been discussed by Ludford & Murray (1960), 

A = exp [ - &RMr( 1 - cos O)] { ( ~ / r )  sin2 8 + RAW[f~ + (A/r2) cos 81 sin2 8) + O(RL). 
(34) 

(35) 

Continuity of the normal component of B and the tangential component of 
magnetic intensity across the sphere boundary gives 

Inside the sphere, the total magnetic field may be derived from 

A’ = ( kr2 + R~ irs cos e) sin2 e. 

where ,u and p’ are the permeabilities of fluid and sphere, respectively. For our 
problemp = p’; thus 

~ = k = # ,  A = - & ,  l = & .  

To zero order in R,, the magnetic field is given by 

B = v,+eXp[-fR~r(l-COS~)] (c;O - - ’ 2rs , 
and v, x B is found to be 

(36) 

v,, x B = ($+) exp [ - #R,r( 1 - cos O)] (0, 0, sin 8 cos O}. 

The Joule-loss density is thus 

= i p  Vsu2bRMr4 COS2 6 Sin2 8 exp [ - RMT( 1 - Co8 8)], 

which differs from the result found in 5 2.1 only by the presence of the exponential 
factor. When this loss density is integrated over the volume of the fluid, the total 
Joule loss is the same as before to the lowest order, [O(R,)]. 

3.3. Drag forcefrom the perturbed velocity (case 1) 

We have not been able to establish the existence of a solution to equation (27) 
for each of the cases discussed in 5 2.1. But Ludford & Murray have discussed the 
method of solution for equation (27) when the magnetic field B has axial sym- 
metry about the direction V and hence their results may be applied directly to 
our case 1. The essence of their method is to take the curl of (27b), giving 

curl [O x vo] = BRM curl [(V, x B) x B], (37) 

where o = curlv, is the vorticity. Since this equation and o each have but a 
single component for case 1 geometry, the resulting equation for w is relatively 
simple and may be solved by means of a series expansion,t 

m 
o = w,(r)sinOPn(cos8). 

n- 1 

t For the necessity of thia form of expansion the reader is referred to Ludford & Murray, 
p. 524. 
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Ludford & Murray show for this geometry that the drag force due to the pm- 
sure is R = pV2a*Dp, where 

Here F = {Fr, Fe, 0} is defined 
magnetic field, it is readily seen that 

F = RM(v0 x B) x B. Using equation (36) for the 

Fe sin 8 + 2 4  COB 8 = $RMexp [ - )RMr( 1 - COB 8)]  r3 sin2 8 cos2 8 + O(B&). 

In evaluating Dp we may set RM = 0 in this laat exponential since this leads only 
to an error of O(R&). The result is 

whioh agrees with (0). 

tensor gives no contribution to this order. 

Dp = &V%w, (384  

In  our problem (caae l), this is the total drag force since the Maxwell strew- 
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